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Hydrate Process for Gas Separation in IGCC Plant
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“Fossil fuels currently supply over 85% of the energy in the United State of 

America.  The combustion of these fossil fuels is responsible for ~ 90% of the 

greenhouse gas (GHG) emissions in the U.S.  Use of these fuels, national and 

world- wide, is expected to increase significantly in the 21st century”.   
SIMTECHE



Objectives of the Engineering Test Module (ETM)

 Conduct experiments under the flow conditions closer to
    industrial operation conditions (fluid velocity > 10 ft/sec)
 Investigate the effect of operation parameters on the CO2
    conversion rate in a continuous flow reactor
 Develop theoretical models to simulate the hydrodynamic and
    kinetic mechanisms of CO2 hydrate formation in dynamic
    conditions and for scale-up design
 Demonstrate the feasibility of using clathrate technology to
    remove CO2 from syn-gas on an industrial scale

SIMTECHE
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Engineering Test Module (ETM) in LANL

Data acquisition
system

Gas delivery system

Raw and conditional water delivery
systems

Continuous Flow Reactor
Accumulators

Flow control and
instrumentation systems

Gas sample station and
analyzer systems
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Thermodynamics of the CO2 - Water System

*  C. N. MURRAY, L. VISINTINI G. BIDOGLIO, B. HENRY,
Paper presented to the International Conference "Greenhouse Gases: Mitigation Options"
22-25 August 1995, London, UK.

Starting point

   GAS HYDRATE CAVITIES:

a. pentagonal dodecahedron (512)
b. tetrakaidecahedron (51262)
c. hexakaidecahedron (51264)
d. Irreg. Dodecahedron (435663)
e. icosaherdon (51268)

  Polyhedron Notation: 
     nm = m faces with n edge
(512 = polygon with 12 pentagonal faces)
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! 

SR =1"
C
CO2"out /(1"CCO2"out )

C
CO2" in /(1"CCO2" in )

Equilibrium at 1000 Psia and 1.33 °C
The Separation ratio is 61%.
CO2 concentration in off gas is 21%.Where:

SR: Separation ratio
CCO2-out: CO2 molar fraction in off gas
CCO2-in  : CO2 molar fraction in feed gas
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Effect of Flow Pattern on Hydrate Formation in ETM

 Flow pattern depends on
    velocities, liquid/gas
    molar ratios, and physical
    properties of components.

 Flow pattern impacts heat
    transfer efficiency, and thus
    impacts on reaction rate.

 Flow pattern affects
    interfacial area between gas
    and liquid phases.

 Flow regime affects ease
    of separation of gas from
    slurry/liquid phase.

Water/CO2 MR > 26

Water/CO2 MR < 10

SIMTECHE
LA-UR- 06-3013

Cited from “The flow of complex mixture in pipes” G. W. Govier 
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Effect of Water/CO2 Molar Ratio on Slurry Concentration

 Multiphase flow (G-L-S)
 Large heat generation
 High gas volume fraction
 High slurry concentration
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Challenges
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Flowchart of the CFR

             Conditions:
Ar as a surrogate gas for H2
Pressure: 600 - 1300 Psia
Temperature: < 10 °C
Water/CO2 molar ratio: < 10
CO2 molar fraction: < 60%

Start

End

         Expected Results:
Heat removal from the reactor
Hydrate formation rate
CO2 concentration change
Slurry concentration change
Heat Transfer
Mass transfer

Fluid velocity impact
Heat Transfer
Mass transfer
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Heat Balance between Process Fluid and Coolant

! 

For Process Fluid :    WPF •CP"PF •
dTPF (x)

dx
= "U *#Di * (TPF (x) "TC (x)) +QH

For Coolant Fluid :   WC •CP"C •
dTC (x)

dx
=U *#Di * (TPF (x) "TC (x))

Nomenclature:
W = Mass flowrate of mixture (g/sec),
Cp =  Heat capacity (J/g-K),
T = Average temperature (°C),
Di =  Inside diameter of tail tube (cm),
QH =  Hydrate formation heat per unit length  (J/cm),
U = Over all heat transfer coeff. (J/cm2-sec-K),
L = Total length of the tail tube (cm),
C, PF = Subscriptions for coolant and process fluid, respectively.

! 

if QH = 0

Over - all  heat transfer coefficient :

 U = "
1

L
* ln

TPF (L) "TC (L)

TPF (0) "TC (0)

# 

$ 
% 

& 

' 
( *

WPF *CP"PF *WC *CP"C

WPF *CP"PF +WC *CP"C

*
1

)Di

dx

WPF, CP-PF TPF(x)
WC, CP-C, TC(x)

x
x = 0 x = L
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Temperature Profiles

• Hydrate production runs
• Exothermal reaction
                QH > 0

SIMTECHE
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A B C D E F

• N2 and water runs under the flow
conditions similar to hydrate
production conditions

• Not reaction heat generated
                   QH = 0.

! 

For Process Fluid :    WPF •CP"PF •
dTPF (x)

dx
= "U *#Di * (TPF (x) "TC (x)) +QH

For Coolant Fluid :   WC •CP"C •
dTC (x)

dx
=U *#Di * (TPF (x) "TC (x))

! 

Wilson line technique :

 
1

U
= K1 + K2 *V

C

"0.33
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Heat Transfer Coefficients in Hydrate Formation

 Both empirical correlations are valid when slurry conc. < 10 mass%
 Overall U significantly decreases when slurry conc. > 10 mass%
 Major heat resistance comes from the process fluid side
 Gas phase dominates the heat transfer on the process fluid side
    when slurry conc. > 15 mass%

SIMTECHE
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Reaching Thermodynamic Equilibrium

  Reach thermodynamic equilibrium at different temperatures!
  Longer tail tube length is needed to reach equilibrium 
     in one stage at 1.33 °C.

SIMTECHE
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Conclusions

Demonstrated CO2 hydrate reaction  is a fast reaction
 induction time less than one second

Can reach thermodynamic equilibrium at different temperatures
Conducted more than 100 steady-state experiments
Established a reliable engineering database for scale-up design
Proved the high fluid velocity is critical for effective heat
   transfer and gas/liquid mixing

  Interfacial reaction
  Operational stability

Believe CO2 hydrate is a feasible technology to remove CO2
   from IGCC plant

SIMTECHE
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